Hamiltonian Annealed Importance Sampling for partition function estimation

نویسندگان

  • Jascha Sohl-Dickstein
  • Benjamin J. Culpepper
چکیده

We introduce an extension to annealed importance sampling that uses Hamiltonian dynamics to rapidly estimate normalization constants. We demonstrate this method by computing log likelihoods in directed and undirected probabilistic image models. We compare the performance of linear generative models with both Gaussian and Laplace priors, product of experts models with Laplace and Student’s t experts, the mc-RBM, and a bilinear generative model. We provide code to compare additional models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Partition Function by Discriminance Sampling

Importance sampling (IS) and its variant, annealed IS (AIS) have been widely used for estimating the partition function in graphical models, such as Markov random fields and deep generative models. However, IS tends to underestimate the partition function and is subject to high variance when the proposal distribution is more peaked than the target distribution. On the other hand, “reverse” vers...

متن کامل

Estimating the Partition Function of Graphical Models Using Langevin Importance Sampling

Graphical models are powerful in modeling a variety of real-world applications. Computing the partition function of a graphical model is known as an NP-hard problem for a general graph. A few sampling algorithms like Markov chain Monte Carlo (MCMC), Simulated Annealing Sampling (SAS), Annealed Importance Sampling (AIS) are developed to approximate the partition function. This paper presents a n...

متن کامل

An effect of initial distribution covariance for annealing Gaussian restricted Boltzmann machines

In this paper, we investigate an effect that the covariance of an initial distribution for annealed importance sampling (AIS) exerts on the estimation accuracy for the partition functions of Gaussian restricted Boltzmann machines (RBMs). A common choice for an AIS initial distribution is a Gaussian RBM (GRBM) with zero weight connections. Such an initial distribution does not show any covarianc...

متن کامل

Bayesian Monte Carlo

We investigate Bayesian alternatives to classical Monte Carlo methods for evaluating integrals. Bayesian Monte Carlo (BMC) allows the incorporation of prior knowledge, such as smoothness of the integrand, into the estimation. In a simple problem we show that this outperforms any classical importance sampling method. We also attempt more challenging multidimensional integrals involved in computi...

متن کامل

On Tracking The Partition Function

Markov Random Fields (MRFs) have proven very powerful both as density estimators and feature extractors for classification. However, their use is often limited by an inability to estimate the partition function Z. In this paper, we exploit the gradient descent training procedure of restricted Boltzmann machines (a type of MRF) to track the log partition function during learning. Our method reli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1205.1925  شماره 

صفحات  -

تاریخ انتشار 2012